AtCoder Beginner Contest 199 D,E,F問題メモ
D - RGB Coloring 2
問題
解法
グラフは連結とは限らないが、連結成分ことに答えを求めれば、それを掛け合わせたものが全体の答えとなる。
なので、連結なグラフの答えを考える。
頂点彩色問題というのはあるが……
辺で隣り合う頂点を全て異なる色に塗る問題は頂点彩色問題と呼ばれていて、一定の性質はあるものの、多項式時間で求められるものでもないらしい。
ただし、2色で塗り分けられるか、という問題に限っては、二部グラフかどうかで判定できる。
(今回は3色なので、ある1色で塗る頂点を全探索して、残りを2色で塗れるか調べる、という方法でもACできたらしい)
全探索
制約も小さいことから、色の塗り方の全探索を考える。
しかし、全てのあり得る色を試すと 320≃3.5×109 で間に合わない。
ある頂点の色を決めるとそこから辺でつながった頂点の選択肢は実質2つになるので、そのような枝刈りを実装することで 220≃106 を実現する。
適当に根を決めて、DFSして全域木を取り、各頂点の親を決める
根の色を決め打つ
根以外の頂点の色の決め方は、「親と異なる2色のうち、どちらの色を用いるか」で、2連結成分の頂点数−1 通り
各色の決め方につき、他の辺と矛盾してないか確認する
とすると、その答え ×3(根の色のバリエーション)がその連結成分の答えとなる。
最初に全域木を取る理由
最初に全域木を取るのは、「各頂点は、どの頂点を基準に、それと異なる色にすればよいか(この場合は親頂点)」を固定したいため。
ここがコロコロ変わると、ある頂点の色を決めたいとき、基準としたい頂点の色がまだ決まっていなくて、決められないことが発生しうる。
①--③--② 数字を色を決めていく順とすると、
②の色を決めたいのに、それより後の③の色の情報が必要となり、立ち往生する
全域木で根に近い方から決めていくと、ある頂点の色を決めるときは必ず親頂点の色は決まっているので、ちゃんと決められる。
もちろん、うまく組めば一発のDFSで矛盾しない色の組み合わせ数を求められるが、混乱しやすい場合は、このようにまずDFSで情報を取り出して、段階を踏むとスッキリする。
bitフラグと色の塗り方の変換例
例えば、3色を 1,2,3 で表し、根の色を 1 と決め打ったとする。
根以外の頂点の色を表すbit集合を 0101
などと決めると、全て頂点の色が決定する。
色の具体的な決め方はあくまで一例
0 1
根① ②: 親①が1, bit集合の1bit目が'1' → 異なる色 2,3 から3を選ぶ
/ \ ③: 親①が1, bit集合の2bit目が'0' → 異なる色 2,3 から2を選ぶ
② ③ ④: 親②が3, bit集合の3bit目が'1' → 異なる色 1,2 から2を選ぶ
/ \ ⑤: 親②が3, bit集合の4bit目が'0' → 異なる色 1,2 から1を選ぶ
④ ⑤
全頂点の色が決まったら、全域木以外の辺を調べる。辺の両端の2頂点が同じ色となっている辺が1つでもあったらアウト。
無ければその組み合わせは正しい色配置となり、1つとしてカウントできる。
各連結成分につき 2^(連結成分の頂点数-1) で全頂点の色を確定できるところがポイント。
Python3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import sys
import numpy as np
def solve(inp):
def solve_component(s, links, visited):
parents = {s: - 1 }
visit_order = [s]
q = [s]
visited[s] = True
check_links = []
while q:
v = q.pop()
for u in links[v]:
if visited[u]:
if parents[u] ! = v:
check_links.append((v, u))
continue
visited[u] = True
parents[u] = v
visit_order.append(u)
q.append(u)
n = len (visit_order)
ans = 0
for bit in range ( 1 << (n - 1 )):
colors = {}
colors[visit_order[ 0 ]] = 1
for i, v in enumerate (visit_order[ 1 :]):
b = (bit >> i) & 1
p = colors[parents[v]]
if p = = 1 :
colors[v] = 2 if b else 3
elif p = = 2 :
colors[v] = 1 if b else 3
else :
colors[v] = 1 if b else 2
for v, u in check_links:
if colors[v] = = colors[u]:
break
else :
ans + = 1
return ans
n = inp[ 0 ]
m = inp[ 1 ]
aaa = inp[ 2 :: 2 ] - 1
bbb = inp[ 3 :: 2 ] - 1
links_base_list = {aaa[ 0 ]}
links_base_list.pop()
links = [links_base_list.copy() for _ in range (n)]
for i in range (m):
links[aaa[i]].add(bbb[i])
links[bbb[i]].add(aaa[i])
ans = 1
visited = np.zeros(n, np.int8)
for v in range (n):
if visited[v]:
continue
ans * = solve_component(v, links, visited) * 3
return ans
SIGNATURE = '(i8[:],)'
if sys.argv[ - 1 ] = = 'ONLINE_JUDGE' :
from numba.pycc import CC
cc = CC( 'my_module' )
cc.export( 'solve' , SIGNATURE)(solve)
cc. compile ()
exit()
if os.name = = 'posix' :
from my_module import solve
else :
from numba import njit
solve = njit(SIGNATURE, cache = True )(solve)
print ( 'compiled' , file = sys.stderr)
inp = np.fromstring(sys.stdin.read(), dtype = np.int64, sep = ' ' )
ans = solve(inp)
print (ans)
|
E - Permutation
問題
1,2,...,N の順列 a1,a2,...,aN を考える
M 個の条件が与えられるので、それを全て満たす順列の個数を求めよ
条件
1≤N≤18
0≤M≤100
解法
これまたD問題に続いて制約が小さい。
左端から決めていって、今まで使った数の組み合わせを管理しても 218 程度の状態数で済む。
S = 10100 → 3,5を先頭2文字に使った、条件を満たす順列の個数
S = 01101 → 1,3,4を先頭3文字に使った、条件を満たす順列の個数
まず、M 個の条件を Xi を基準にまとめておく。
i 番目の数を置く際、i=Xk である条件 k を満たしているかをチェックしていくと、漏れなく全ての条件をチェックできる。
実際に遷移を考える。
10100 からの遷移を考える。
どれか1つの数字を置く
たとえば1を置くことにする
10101
条件のうち、Xi=3 であるものは、(X,Y,Z)=(3,4,3),(3,3,1) の2つとする
これらが全て満たされているかチェックする
(4,3): _0101 の中に立っているbitが3個以下ならよい → OK
(3,1): __101 の中に立っているbitが1個以下ならよい → NG
全てを満たせなかったので、10101は遷移先として不適当ということになる。
何もせず、次に置く数字を試す。
たとえば4を置くことにする
11100
同様に条件が全て満たされているかチェックする
(4,3): _1100 の中に立っているbitが3個以下ならよい → OK
(3,1): __100 の中に立っているbitが1個以下ならよい → OK
遷移先として適当なので、遷移先に遷移元の状態数を加算する
DP[3][11100] += DP[2][10100]
このように、遷移元のbit集合を決める→次に置く数字(立てるbit)を決める→条件が満たされているかチェック、というループを回す。
遷移元となるのは 2N、立てるbitを決めるのに N、それが条件を満たしているかの確認は X の分布に依るのだが、、、
最悪ケースは N=18,i=9 で一番状態数が多い遷移に全ての Xi がまとまっている状態で、その場合 18C9×9×100≃4.7×107 と少々厳しめの見積もりとなるが、まぁそこまで極端なケースは無かったのか、通った。
より高速にするにはループの順番を変えて、遷移元のbit集合を決める→現時点でギリギリの条件を探し、次に置くことが可能な最小の数字を求める→それ以上の数字は置けるので置く、とする方法もある。
Python3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
import sys
import numpy as np
def solve(inp):
def pop_count(n):
c = (n & 0x55555555 ) + ((n >> 1 ) & 0x55555555 )
c = (c & 0x33333333 ) + ((c >> 2 ) & 0x33333333 )
c = (c & 0x0f0f0f0f ) + ((c >> 4 ) & 0x0f0f0f0f )
c = (c & 0x00ff00ff ) + ((c >> 8 ) & 0x00ff00ff )
c = (c & 0x0000ffff ) + ((c >> 16 ) & 0x0000ffff )
return c
n = inp[ 0 ]
m = inp[ 1 ]
xxx = inp[ 2 :: 3 ]
yyy = inp[ 3 :: 3 ]
zzz = inp[ 4 :: 3 ]
tuple_list = [(n, n)]
tuple_list.clear()
events = [tuple_list.copy() for _ in range (n + 1 )]
for i in range (m):
events[xxx[i]].append((yyy[i], zzz[i]))
dp_from = { 0 : 1 }
dp_to = dp_from.copy()
dp_to.clear()
for i in range ( 1 , n + 1 ):
for bit in dp_from:
for j in range (n):
b = 1 << j
if bit & b:
continue
new = bit | b
for y, z in events[i]:
if pop_count(new & (( 1 << y) - 1 )) > z:
break
else :
if new in dp_to:
dp_to[new] + = dp_from[bit]
else :
dp_to[new] = dp_from[bit]
dp_from, dp_to = dp_to, dp_from
dp_to.clear()
print (dp_from)
full_bit = ( 1 << n) - 1
if full_bit in dp_from:
return dp_from[full_bit]
else :
return 0
SIGNATURE = '(i8[:],)'
if sys.argv[ - 1 ] = = 'ONLINE_JUDGE' :
from numba.pycc import CC
cc = CC( 'my_module' )
cc.export( 'solve' , SIGNATURE)(solve)
cc. compile ()
exit()
if os.name = = 'posix' :
from my_module import solve
else :
from numba import njit
solve = njit(SIGNATURE, cache = True )(solve)
print ( 'compiled' , file = sys.stderr)
inp = np.fromstring(sys.stdin.read(), dtype = np.int64, sep = ' ' )
ans = solve(inp)
print (ans)
|
F - Graph Smoothing
問題
N 頂点 M 辺の単純無向グラフ
各頂点には最初、数 A1,A2,...,AN が書かれている
これから K 回にわたり、以下の操作を行う
操作
全ての操作後、各頂点に書かれている値の期待値を mod109+7 で求めよ
2≤N≤100
0≤K≤109
解法
競プロ的な典型に慣れていると、D~Fの中ではこれが一番解法を思いつきやすいかも知れない。
まず、1回の操作でどうなるか考える。丸数字は Ai(各頂点の値)を示す。
⑤----③----②
| | /
⑨----①--'
⑤の頂点は、1回の操作後、6本の各辺が選ばれた場合のそれぞれで以下のようになる。
⑤-③の辺: 5+32=4
⑤-⑨の辺: 5+92=7
それ以外の4辺: 5 のまま
で、期待値としてはこれらの平均を取って、316 となる。
頂点の値を一般化すると、頂点 1 にとって1回操作後の期待値は、
A1----A2----A3
| | /
A4----A5--'
というように、現在の A1~A5 の値の線形和で表現できる。
他の頂点も同様。
ここで、期待値の線形性を使う。
従って、1回分の操作を行列 M で表すと、K 回分の操作を表す行列は、MK となる。
Ans.=(10121120112011291211201120112101201121120010121120112112112912)K(A1A2A3A4A5)
行列累乗はダブリングで高速化できる。
Python3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import numba
import numpy as np
@numba .njit( 'i8[:,:](i8[:,:],i8[:,:],i8)' , cache = True )
def dot(mat1, mat2, MOD):
ret = np.zeros_like(mat1)
n = mat1.shape[ 0 ]
for i in range (n):
for j in range (n):
for k in range (n):
ret[i][j] = (ret[i][j] + mat1[i][k] * mat2[k][j]) % MOD
return ret
@numba .njit( 'i8[:](i8[:,:],i8[:],i8)' , cache = True )
def dot2(mat1, mat2, MOD):
ret = np.zeros_like(mat2)
n = mat1.shape[ 0 ]
for i in range (n):
for k in range (n):
ret[i] = (ret[i] + mat1[i][k] * mat2[k]) % MOD
return ret
n, m, k = map ( int , input ().split())
aaa = list ( map ( int , input ().split()))
MOD = 10 * * 9 + 7
rm = pow (m, MOD - 2 , MOD)
rm2 = rm * pow ( 2 , MOD - 2 , MOD) % MOD
mat = [[ 0 ] * n for _ in range (n)]
complement_degrees = [m] * n
for _ in range (m):
x, y = map ( int , input ().split())
x - = 1
y - = 1
mat[x][x] + = rm2
mat[x][y] + = rm2
mat[y][y] + = rm2
mat[y][x] + = rm2
complement_degrees[x] - = 1
complement_degrees[y] - = 1
for i in range (n):
mat[i][i] + = rm * complement_degrees[i]
mat = np.array(mat, np.int64) % MOD
ans = np.identity(n, np.int64)
t = k
while t:
if t & 1 :
ans = dot(mat, ans, MOD)
mat = dot(mat, mat, MOD)
t >> = 1
aaa = np.array(aaa, np.int64)
ans = dot2(ans, aaa, MOD).tolist()
print ( '\n' .join( map ( str , ans)))
|