差分
このページの2つのバージョン間の差分を表示します。
両方とも前のリビジョン前のリビジョン | 次のリビジョン両方とも次のリビジョン | ||
programming_algorithm:dynamic_programming:longest_common_subsequence [2018/05/23] – ikatakos | programming_algorithm:dynamic_programming:longest_common_subsequence [2019/01/09] – ikatakos | ||
---|---|---|---|
行 117: | 行 117: | ||
* Aにおいて、'' | * Aにおいて、'' | ||
* 延長できる場合、L に追加する | * 延長できる場合、L に追加する | ||
+ | |||
+ | =====具体的な最長共通部分列===== | ||
+ | |||
+ | * [[wp> | ||
+ | |||
+ | |S|×|T| の配列上でDPを行い、途中の計算結果を保存しておくことで、最長共通部分列と共に、その具体例を構築することが出来る。 | ||
+ | |||
+ | S1...i と T1...j のLCSの長さを Li,j とする。 | ||
+ | |||
+ | ==Si+1=Tj+1 の時== | ||
+ | |||
+ | LCS長は1文字拡張できる。Li+1,j+1=Li,j+1 | ||
+ | |||
+ | ==それ以外の時== | ||
+ | |||
+ | LCS長は、片方の末尾を1文字削った2通りの長い方となる。 Li+1,j+1=max(Li+1,j,Li,j+1) | ||
+ | |||
+ | これで、i=1..|S|、j=1..|T| の2重ループでDPテーブルを小さい方から埋めていくことで、DP[|S|][|T|] が最終的なLCS長となる。 | ||
+ | |||
+ | で、具体的な文字列は、DP[|S|][|T|] から逆向きに復元する。 | ||
+ | |||
+ | ==DP[i][j]=DP[i][j−1] または DP[i][j]=DP[i−1][j] の時== | ||
+ | |||
+ | 同じである数字の方に移動する。両方同じ場合は、具体例が1つ構築できればいい場合は適当に1つ選んで移動する。 | ||
+ | |||
+ | ==それ以外の時== | ||
+ | |||
+ | Si=Tj であるはずなので、それをLCSに加え、(i−1,j−1) に移動する。 | ||
+ | |||
+ | < | ||
+ | 0 1 2 3 4 5 6 7 | ||
+ | M Z J A W X U | ||
+ | 0 | 0 0 0 0 0 0 0 0 | ||
+ | 1 X |⓪ 0 0 0 0 0 1 1 | ||
+ | 2 M | 0❶① 1 1 1 1 1 | ||
+ | 3 J | 0 1 1❷ 2 2 2 2 | ||
+ | 4 Y | 0 1 1② 2 2 2 2 | ||
+ | 5 A | 0 1 1 2❸③③ 3 | ||
+ | 6 U | 0 1 1 2 3 3 3❹ 丸付きの数字を辿っていき、 | ||
+ | 7 Z | 0 1 2 2 3 3 3④ 黒丸の数字を拾っていくと、LCS(の1つ)は MJAU と復元できる | ||
+ | </ | ||